A tile pattern on a wall is made up of two identical parallelograms and three identical triangles. What is the area of the tile pattern? Enter your answer in the box.

Accepted Solution

So,The area of a parallelogram is simply base times height, or BH.  So, the area of the two parallelograms is 2BH.The area of a triangle is 1/2bh (to distinguish the triangle's b and h from the parallelogram's).  Therefore, the area of the three triangles is 3/2bh.Adding up all of the areas, we get A = 2BH + 3/2bh.[tex]total\ blades=\frac{100\ blades}{12in.^2}*\frac{144\ in.^2}{ft.^2}*A_T[/tex][tex]\frac{100\ blades}{12in.^2}*\frac{144\ in.^2}{ft.^2}=\frac{1.2*10^2\ blades}{ft.^2}[/tex][tex]\frac{2\ ft.}{pace}[/tex][tex]A_T=A_Q+A_R[/tex][tex]A_Q=\frac{3}{4}(8\ paces*\frac{2\ ft.}{pace})^2=48\ ft.^2[/tex][tex]A_R=14\ paces*\frac{2\ ft.}{pace}*7\ paces*\frac{2\ ft.}{pace}=392\ ft.^2[/tex][tex]A_T=392+48\approx4.5*10^2\ ft.^2[/tex][tex]\frac{1.2*10^2\ blades}{ft.^2}*4.5*10^2\ ft.^2=5.4*10^4\ blades[/tex]